By Topic

Kalman Predictive Redundancy System for Fault Tolerance of Safety-Critical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Man Ho Kim ; Sch. of Mech. Eng., Pusan Nat. Univ., Busan, South Korea ; Suk Lee ; Kyung Chang Lee

The dependence of intelligent vehicles on electronic devices is rapidly increasing the concern over fault tolerance due to safety issues. For example, an x-by-wire system, such as electromechanical brake system in which rigid mechanical components are replaced with dynamically configurable electronic elements, should be fault-tolerant because a critical failure could arise without warning. Therefore, in order to guarantee the reliability of safety-critical systems, fault-tolerant functions have been studied in detail. This paper presents a Kalman predictive redundancy system with a fault-detection algorithm using the Kalman filter that can remove the effect of faults. This paper also describes the detailed implementation of such a system using an embedded microcontroller to demonstrate that the Kalman predictive redundancy system outperforms well-known average and median voters. The experimental results show that the Kalman predictive redundancy system can ensure the fault-tolerance of safety-critical systems such as x-by-wire systems.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:6 ,  Issue: 1 )