By Topic

MMSE-Based MDL Method for Robust Estimation of Number of Sources Without Eigendecomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Huang ; Dept. of Electron. Eng., Beijing Inst. of Technol., Beijing, China ; Teng Long ; Erke Mao ; H. C. So

It is well known that the conventional eigenvalue-based minimum description length (MDL) approach for source number estimation suffers from high computational load and performs optimally only in the presence of spatially and temporally white noise. To improve the robustness of the MDL methodology, we propose to utilize the minimum mean square error (MMSE) of the multistage Wiener filter to calculate the required description length for encoding the observed data, instead of relying on the eigenvalues of the data covariance matrix. As there is no need to calculate the covariance matrix and its eigenvalue decomposition, our derived MMSE-based MDL (mMDL) method is also more computationally efficient than the traditional counterparts. Numerical examples are included to demonstrate the robustness of the mMDL detector in nonuniform noise.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 10 )