By Topic

Analysis on Rate-Distortion Performance of Compressive Sensing for Binary Sparse Source

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Feng Wu ; Microsoft Res. Asia, Beijing ; Jingjing Fu ; Zhouchen Lin ; Bing Zeng

This paper proposes to use a bipartite graph to represent compressive sensing (CS). The evolution of nodes and edges in the bipartite graph, which is equivalent to the decoding process of compressive sensing, is characterized by a set of differential equations. One of main contributions in this paper is that we derive the close-form formulation of the evolution in statistics, which enable us to more accurately analyze the performance of compressive sensing. Based on the formulation, the distortion of random sampling and the rate needed to code measurements are analyzed briefly. Finally, numerical experiments verify our formulation of the evolution and the rate-distortion curves of compressive sensing are drawn to be compared with entropy coding.

Published in:

Data Compression Conference, 2009. DCC '09.

Date of Conference:

16-18 March 2009