Cart (Loading....) | Create Account
Close category search window
 

Hybrid nanofabrication processes utilizing diblock copolymer nanotemplate prepared by self-assembled monolayer based surface neutralization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kim, Su-Jin ; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea ; Maeng, W.J. ; Lee, S.K. ; Park, D.H.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.2830693 

Nanostructures including nanohole and metal dot arrays were fabricated by hybrid processes combing self-assembled diblock copolymer and conventional semiconductor processes. The interfacial energy between polystyrene-b-polymethylmetacrylate (PS-b-PMMA) diblock copolymer and substrate surface was controlled by employing a self-assembled monolayer (SAM), resulting in a polymer template with well-ordered cylindrical nanohole array. The nanohole sizes were controlled within 10 to 22 nm in diameter using block copolymers with different molecular weights. The PS nanotemplates were fabricated on various substrates, including oxides, nitrides, and poly-Si. Nanohole pattern was transferred by dry etching process, producing inorganic nanohole templates. Also, gold nanodot arrays with diameter smaller than 10 nm were fabricated through lift off process.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:26 ,  Issue: 1 )

Date of Publication:

Jan 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.