By Topic

Design sensitivity analysis for transient eddy current problems using finite element discretization and adjoint variable method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Il-Han Park ; Dept. of Electr. Eng., Soongsil Univ., Seoul, South Korea ; In-Gu Kwak ; Hyang-Beom Lee ; Song-yop Hahn
more authors

For shape design problems subjected to the transient eddy current equation, a shape design sensitivity expressed explicitly in terms of design variables is derived using a discrete system equation of finite elements and an adjoint equation method. The original state equation is an initial-value problem which is to be solved by time-stepping finite element method. On the other hand, the adjoint equation is obtained as a terminal-value problem which is also to be solved by time-stepping finite element method. With the state and adjoint variables solved, the sensitivity is evaluated, which is employed in a gradient-based optimization algorithm. As a numerical example, an eddy current distribution control on a metal surface is treated using the proposed method in an induction heating system

Published in:

Magnetics, IEEE Transactions on  (Volume:32 ,  Issue: 3 )