By Topic

Selective growth of carbon nanotube on scanning probe tips by microwave plasma chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have selectively grown carbon nanotubes on the probe tip of an atomic force microscope by microwave plasma chemical vapor deposition. The catalyst domain was defined on the tip apex of an Si based scanning probe by local electric field induced oxidation of a TiN cap layer, under which the cobalt catalyst layer was predeposited on the probe surface. High resolution atomic force microscopy images of an SiO2 trench pattern are demonstrated using the carbon nanotube tip. The nanotube tip fabrication method is simple and compatible with existing thin film process technology. © 2004 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:22 ,  Issue: 1 )