Cart (Loading....) | Create Account
Close category search window
 

Electron emission theory and its application: Fowler–Nordheim equation and beyond

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jensen, K.L. ; Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.1573664 

In this article, we examine the Fowler–Nordheim (FN) equation for field emission using pedagogical models to introduce and illuminate its origins, limitations, extensions, and application to multidimensional structures. The analyses of modern electron sources generally invoke either the FN equation or the Richardson–Laue–Dushman equation (thermionic emission) to interpret experimental data. These equations have ranges of validity that are increasingly challenged by operating conditions. The present article shall therefore have several aims. An introduction to and review of the FN equation shall be presented. Extensions to account for many body and other effects, shall be motivated by accessible models, and a generalized thermal-field emission methodology developed to account for low work function, high fields, photoexcitation, and other conditions in which the incident electron energy is near the barrier maximum. An account of effects such as resonance, which are not generally part of the standard emission lexicon, is given. Finally, specialized topics using the aforementioned analyses shall be examined, e.g., multidimensionality, the statistical nature of emission site variation, and so on. The analyses shall be predicated on simple models in an effort to provide formulae of general utility such that computational requirements are minimized. © 2003 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:21 ,  Issue: 4 )

Date of Publication:

Jul 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.