By Topic

Development of triode-type carbon nanotube field-emitter arrays with suppression of diode emission by forming electroplated Ni wall structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Jung, J.E. ; Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea 440-600 ; Choi, J.H. ; Park, Y.J. ; Lee, H.W.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.1516181 

Triode-type field-emitter arrays were developed by screen printing a photosensitive paste including single-walled carbon nanotubes. Ni wall structure (NWS) was electroplated to form a thick gate to suppress diode emission induced by strong electric strengths due to an anode potential and to focus electron beams to their destined color subpixels. It was observed in computer simulations, as well in experiments that the NWS with the optimum thickness was effective in reducing the diode emission and enhancing electron-beam focusing by modifying electrical potentials around the carbon nanotube emitters. Our fully sealed field-emission display panel using the field-emitter arrays with the NWS demonstrated full color moving images without serious diode emission and with satisfactory color separation. © 2003 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:21 ,  Issue: 1 )