By Topic

Low-k1 optical lithography for 100 nm logic technology and beyond

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yen, Anthony ; Taiwan Semiconductor Manufacturing Company, Ltd., No. 9, Creation Road 1, Science-Based Industrial Park, Hsin-Chu, Taiwan, Republic of China ; Yu, Shinn-Sheng ; Chen, Jeng-Horng ; Chen, Chun-Kuang
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.1412894 

In this article, we present 193 nm lithography at a k1 factor of 0.37–0.40 and discuss several topics important to 100 nm logic such as optical proximity correction (OPC), control of critical dimension (CD) variation, and lowering of the mask error factor (MEF). In OPC, the best correction results can be achieved by developing accurate models and using reasonable segmentation rules. The technique of variable-dose exposures is demonstrated as a means to reduce interfield CD variation once the cause is known and can be characterized. A more than 30% reduction in CD variation is realized for variation caused by temperature nonuniformity in hot plates. The concept of two dimensional (2D) MEF is introduced to describe situations at feature ends. Higher numerical aperture or more effectively, quadrupole illumination, can be used to lower 1D and 2D MEFs. We also explore the technique of dipole illumination, which may be a candidate for taking optical lithography to k1≪0.35. © 2001 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:19 ,  Issue: 6 )