Cart (Loading....) | Create Account
Close category search window
 

Low-temperature Si epitaxial growth on oxide patterned wafers by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hwan-Kuk Yuh ; School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea ; Park, Jin‐Won ; Seung-Hyun Lim ; Hwang, Ki‐Hyun
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.1358882 

Low-temperature electron cyclotron resonance hydrogen plasma cleaning was developed for low-temperature epitaxial growth of Si by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition on oxide-patterned wafers. Defect-free undoped Si epitaxial layers could be obtained by optimizing the hydrogen ion flux and cleaning time, however, in the case of boron-doped Si epitaxial growth, Si epilayers had defect zones away from the bird’s beak along the window edges and a defect-free zone at the center of the window. Cross section transmission electron microscopy and energy dispersive spectroscopy results suggest that the defect zone formation is closely related with local oxygen contamination. Possible origins of the local oxygen contamination are discussed. © 2001 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:19 ,  Issue: 2 )

Date of Publication:

Mar 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.