By Topic

Effect of photoenhanced minority carriers in metal-oxide-semiconductor capacitor studied by scanning capacitance microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Shin, S. ; Department of Physics and Condensed Matter Research Institute, Seoul National University, Seoul 151-742, Korea ; Kye, J.-I. ; Pi, U.H. ; Khim, Z.G.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.1326947 

A scanning capacitance microscope was used to study the photoenhanced minority-carrier contribution to the capacitance of the metal-oxide-semiconductor (MOS) capacitor at high frequencies. When a light is induced over the semiconductor surface, electron-hole pairs are generated and recombined. This steady-state generation-recombination process yields the temporary source of minority carriers, and the inversion layer underneath the oxide layer can respond to very fast-varying ac bias. We measured the differential capacitance (dC/dV) of the MOS capacitor under various light intensities, and observed a peak at the inversion region where the amplitude increased as the irradiation intensity increased. By integrating dC/dV with respect to V, we obtained C–V curves in which the capacitance of the depletion region recovered its value up to that of the accumulation region as the light intensity increased. We also observed that the C–V curves shifted in one direction under irradiation which we believe is due to the surface photovoltaic effect. © 2000 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:18 ,  Issue: 6 )