Cart (Loading....) | Create Account
Close category search window

Reduction of sidewall defect induced leakage currents by the use of nitrided field oxides in silicon selective epitaxial growth isolation for advanced ultralarge scale integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bashir, R. ; School of Electrical and Computer Engineering, Purdue University, W. Lafayette, Indiana 47906 ; Su, T. ; Sherman, J.M. ; Neudeck, G.W.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Defects in the near sidewall region in selective epitaxial growth of silicon have prevented its widespread use as a viable dielectric isolation technology. The main cause of these defects has been demonstrated to be thermal stress due to mismatch in the coefficient of thermal expansion between silicon and silicon dioxide. This article presents the detailed electrical characterization of these sidewall defects using P+/N junction diodes fabricated using silicon dioxide and thermally nitrided silicon dioxide as the field insulator. It is shown that the use of field oxide which was nitrided at 1100 °C for 60 min in ammonia gas ambient reduced the reverse saturation current density in the diodes by a factor of 6 and also improved the forward recombination and ideality factors when compared to standard thermal field oxide isolated diodes. The improvement of the sidewall quality was attributed to a reduction in thermal stress due to the modification of the coefficient of thermal expansion of nitrided silicon oxide. © 2000 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:18 ,  Issue: 2 )

Date of Publication:

Mar 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.