By Topic

Electric force microscopy of induced charges and surface potentials in GaN modified by light and strain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Bridger, P.M. ; Thomas J. Watson, Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125 ; Bandic, Z.Z. ; Piquette, E.C. ; McGill, T.C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.590819 

We have studied molecular beam epitaxy grown GaN films using electric force microscopy to detect sub-1 μm regions of electric field gradient and surface potential variations associated with GaN extended defects. The large piezoelectric coefficients of GaN together with strain introduced by crystalline imperfections produce variation in piezoelectrically induced electric fields around these defects. The consequent spatial rearrangement of charges can be detected by electrostatic force microscopy, and can be additionally modified by externally applied strain and illumination. The electron force microscopy signal was found to be a function of the applied tip bias, showed reversal under externally applied strain, and was sensitive to above band gap illumination. © 1999 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:17 ,  Issue: 4 )