By Topic

Low temperature in situ boron doped Si epitaxial growth by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Park, Jin‐Won ; School of Materials Science and Engineering and Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul 151-742, Korea ; Hwang, Ki-Hyun ; Yoon, Euijoon

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Boron-doped silicon epitaxial layers were grown by ultrahigh vacuum electron cyclotron resonance chemical vapor deposition at 440–510 °C. Reflection high-energy electron diffraction and transmission electron microscopy (TEM) were used to study the effect of boron doping on the crystalline quality of silicon epitaxial layers. At growth conditions where undoped defect-free Si epitaxial layers were successfully obtained at 440 °C, in situ boron-doped epitaxial layers were replete with twins. However, at conditions with increased ion energy flux and at a higher temperature, 470 °C, no twins were observed. TEM analysis revealed the presence of an amorphous phase in the twinned epitaxial layers. It is believed that the amorphous phase formation, presumably from the reaction between B and O during the doping process, appeared to hinder the growth of the epitaxial layer, leading to degradation of the Si crystalline quality. Defect-free boron-doped Si epitaxial layers were able to be obtained by suppressing the amorphous phase formation at conditions with increased growth temperature and higher ion energy flux. © 1999 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:17 ,  Issue: 1 )