By Topic

Light-coupling masks: An alternative, lensless approach to high-resolution optical contact lithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schmid, Heinz ; IBM Research Division, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland ; Biebuyck, Hans ; Michel, Bruno ; Martin, O.J.F.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.590471 

We describe an approach to optical lithography using light-scattering contact masks with protruding elements that couple light into a photoresist. This method differs from conventional contact lithography in two important ways. First, because portions of the light-coupling mask (LCM) are made from a polymer, intimate contact with the resist occurs over large areas without additional load. This contact is readily reversible, and causes no observable damage or contamination of the LCM or substrate. Second, the structure formed by the protruding parts of the LCM in contact with the resist can define local optical modes that impart directionality to the light propagating through the LCM and amplify its intensity. We provide an experimental realization and theoretical description of the method, demonstrating its use for the formation of 100 nm features with light having a wavelength of 256 nm. © 1998 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:16 ,  Issue: 6 )