Cart (Loading....) | Create Account
Close category search window

Electrical properties and uniformity of two dimensional electron gases grown on cleaned SiGe virtual substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Paul, D.J. ; Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom ; Ahmed, A. ; Pepper, M. ; Churchill, A.C.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The low temperature electrical properties of modulation-doped two dimensional electron gases (2DEGs) in the SiGe system were studied. The effects on the electrical properties of removing the substrate from the growth chamber after the growth of the virtual substrate, chemically cleaning the virtual substrate, and then growing the modulation-doped structure on a thin SiGe buffer were investigated. The results demonstrate that the carrier density and mobility decrease as the regrowth interface is moved closer to the 2DEG. The uniformity of the regrown wafers was also investigated. A monotonic increase in carrier density and a decrease in mobility were observed towards the edge of the wafers. Appropriate mechanisms will be discussed. © 1998 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:16 ,  Issue: 3 )

Date of Publication:

May 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.