Cart (Loading....) | Create Account
Close category search window
 

Molecular beam epitaxy growth of Iny2Al1-y2As/In0.73Ga0.27As/Iny1Al1-y1As/ InP P-HEMTs with enhancement conductivity using an intentional nonlattice-matched buffer layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Jiang, C. ; Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, Peoples Republic of China ; Xu, B. ; Li, H.X. ; Liu, F.Q.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.589218 

Pseudomorphic Iny2Al1-y2As/In0.73Ga0.27As/Iny1Al1-y1As (y1≥0.52) modulation-doped heterostructures with an intentional nonlattice-matched buffer layer were successfully grown by molecular beam epitaxy on (100)InP substrates. Fourier transform photoluminescence and double crystal x-ray diffraction measurements show a superior crystalline quality in the high In content channel, when In mole fraction increases from y1=0.52 to 0.55 in the Iny1Al1-y1As buffer layer. In this case, an increasing of 16.3% and 23.5% for conductivity (μ×ns) and mobility, related to the strain compensation in the In0.73Ga0.27As channel, was achieved, respectively, comparing to the structure containing a well-lattice matched buffer layer. With increasing the mismatch further (y1=0.58), a morphology with cross-hatched pattern was observed due to the onset of a large amount of misfit dislocations, and the electronic characterization is not able to be improved continuously. Because we can realize high quality strained P-HEMTs in a relative wide range of equivalent beam flux (EBF) ratios, the stringent control over the constant EBF is not indispensable on this In-based material system. © 1997 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.