By Topic

Fully large-scale integration-process-compatible Si field emitter technology with high controllability of emitter height and sharpness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We developed a fully large-scale integration (LSI)-process-compatible technology with excellent control of emitter shape for the first time. The fabricated emitter tip configuration has two-step-cone shape whose upper and lower cone configurations are controllable independently. While the upper parts determine the emitter tip sharpness and the apex angle, the lower parts determine the emitter height by utilizing two-step thermal oxidation for emitter tip sharpening in addition to anisotropic reactive ion etching for the emitter height control. The stable and uniform thermal oxidation for sharpening emitters produces excellent uniformity, and the process, without liftoff, is matched with Si LSI technology completely. The obtained 1944 tip emitter with 800 nm gate diameter showed low threshold voltage of 35 V. © 1997 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:15 ,  Issue: 2 )