Cart (Loading....) | Create Account
Close category search window
 

An Adaptable k -Nearest Neighbors Algorithm for MMSE Image Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ni, K.S. ; Univ. of California at San Diego, La Jolla, CA, USA ; Nguyen, T.Q.

We propose an image interpolation algorithm that is nonparametric and learning-based, primarily using an adaptive k-nearest neighbor algorithm with global considerations through Markov random fields. The empirical nature of the proposed algorithm ensures image results that are data-driven and, hence, reflect ldquoreal-worldrdquo images well, given enough training data. The proposed algorithm operates on a local window using a dynamic k -nearest neighbor algorithm, where k differs from pixel to pixel: small for test points with highly relevant neighbors and large otherwise. Based on the neighbors that the adaptable k provides and their corresponding relevance measures, a weighted minimum mean squared error solution determines implicitly defined filters specific to low-resolution image content without yielding to the limitations of insufficient training. Additionally, global optimization via single pass Markov approximations, similar to cited nearest neighbor algorithms, provides additional weighting for filter generation. The approach is justified in using a sufficient quantity of training per test point and takes advantage of image properties. For in-depth analysis, we compare to existing methods and draw parallels between intuitive concepts including classification and ideas introduced by other nearest neighbor algorithms by explaining manifolds in low and high dimensions.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.