By Topic

Traceable Waveform Calibration With a Covariance-Based Uncertainty Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We describe a method for calibrating the voltage that a step-like pulse generator produces at a load at every time point in the measured waveform. The calibration includes an equivalent-circuit model of the generator that can be used to determine how the generator behaves when it is connected to arbitrary loads. The generator is calibrated with an equivalent-time sampling oscilloscope and is traceable to fundamental physics via the electro-optic sampling system at the National Institute of Standards and Technology. The calibration includes a covariance-based uncertainty analysis that provides the uncertainty at each time in the waveform vector and the correlations between the uncertainties at the different times. From the calibrated waveform vector and its covariance matrix, we calculate pulse parameters and their uncertainties. We compare our method with a more traditional parameter-based uncertainty analysis.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 10 )