By Topic

Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ryou, Jae-Hyun ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Yoder, P.D. ; Liu, Jianping ; Lochner, Z.
more authors

This paper reviews current technological developments in polarization engineering and the control of the quantum-confined Stark effect (QCSE) for InxGa1- xN-based quantum-well active regions, which are generally employed in visible LEDs for solid-state lighting applications. First, the origin of the QCSE in III-N wurtzite semiconductors is introduced, and polarization-induced internal fields are discussed in order to provide contextual background. Next, the optical and electrical properties of InxGa1- xN-based quantum wells that are affected by the QCSE are described. Finally, several methods for controlling the QCSE of InxGa1- xN-based quantum wells are discussed in the context of performance metrics of visible light emitters, considering both pros and cons. These strategies include doping control, strain/polarization field/electronic band structure control, growth direction control, and crystalline structure control.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 4 )