By Topic

Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nishad Patil ; Center for Adv. Life Cycle Eng., Univ. of Maryland, College Park, MD ; Jose Celaya ; Diganta Das ; Kai Goebel
more authors

Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to thermal overstress tests using a transistor test board until device latch-up. The collector-emitter current, transistor case temperature, transient and steady state gate voltages, and transient and steady state collector-emitter voltages were monitored in-situ during the test. Pre- and post-aging characterization tests were performed on the IGBT. The aged parts were observed to have shifts in capacitance-voltage (C-V) measurements as a result of trapped charge in the gate oxide. The collector-emitter ON voltage VCE(ON) showed a reduction with aging. The reduction in the VCE(ON) was found to be correlated to die attach degradation, as observed by scanning acoustic microscopy (SAM) analysis. The collector-emitter voltage, and transistor turn-off time were observed to be precursor parameters to latch-up. The monitoring of these precursor parameters will enable the development of a prognostic methodology for IGBT failure. The prognostic methodology will involve trending precursor data, and using physics of failure models for prediction of the remaining useful life of these devices.

Published in:

IEEE Transactions on Reliability  (Volume:58 ,  Issue: 2 )