By Topic

Fast and Adaptive Method for SAR Superresolution Imaging Based on Point Scattering Model and Optimal Basis Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng-ming Wang ; Coll. of Sci., Nat. Univ. of Defense Technol., Changsha ; Wei-wei Wang

A novel fast and adaptive method for synthetic aperture radar (SAR) superresolution imaging is developed. Based on the point scattering model in the phase history domain, a dictionary is constructed so that the superresolution imaging process can be converted to a problem of sparse parameter estimation. The approximate orthogonality of this dictionary is exploited by theoretical derivation and experimental verification. Based on the orthogonality of the dictionary, we propose a fast algorithm for basis selection. Meanwhile, a threshold for obtaining the number and positions of the scattering centers is determined automatically from the inner product curves of the bases and observed data. Furthermore, the sensitivity of the threshold on estimation performance is analyzed. To reduce the burden of mass calculation and memory, a simplified superresolution imaging process is designed according to the characteristics of the imaging parameters. The experimental results of the simulated images and an MSTAR image illustrate the validity of this method and its robustness in the case of the high noise level. Compared with the traditional regularization method with the sparsity constraint, our proposed method suffers less computation complexity and has better adaptability.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 7 )