By Topic

Automation of Challenging Spatial-Temporal Biomedical Observations With the Adaptive Scanning Optical Microscope (ASOM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Potsaid, B. ; Center for Autom. Technol., Rensselaer Polytech. Inst., Troy, NY, USA ; Finger, F.P. ; Wen, J.T.

Biological studies, drug discovery, and medical diagnostics benefit greatly from automated microscope platforms that can outperform even the most skilled human operators in certain tasks. However, the small field-of-view of a traditional microscope operating at high resolution poses a significant challenge in practice. The common approach of using a moving stage suffers from relatively low dynamic bandwidth and agitation to the specimen. This paper describes an automated microscope station based on the novel adaptive scanning optical microscope (ASOM), which combines a high-speed post-objective scanning mirror, a custom design scanner lens, and a microelectromechanical systems (MEMS) deformable mirror to achieve a greatly expanded field-of-view. After describing the layout and operating principle of the ASOM imaging subsystem, we present a system architecture for an automated microscope system suitable for the ASOM's unique wide field and high-speed imaging capabilities. We then describe a low-cost experimental prototype of the ASOM that demonstrates all critical optical characteristics of the instrument, including the calibration of the MEMS deformable mirror. Finally, we present initial biological (living nematode worms) imaging results obtained with the experimental apparatus and discuss the impact of the ASOM on biomedical imaging activities.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 3 )