Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Scalable and Effective Test Generation for Role-Based Access Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Masood, A. ; Dept. of Avionics Eng., Air Univ., Islamabad, Pakistan ; Bhatti, R. ; Ghafoor, A. ; Mathur, A.P.

Conformance testing procedures for generating tests from the finite state model representation of Role-Based Access Control (RBAC) policies are proposed and evaluated. A test suite generated using one of these procedures has excellent fault detection ability but is astronomically large. Two approaches to reduce the size of the generated test suite were investigated. One is based on a set of six heuristics and the other directly generates a test suite from the finite state model using random selection of paths in the policy model. Empirical studies revealed that the second approach to test suite generation, combined with one or more heuristics, is most effective in the detection of both first-order mutation and malicious faults and generates a significantly smaller test suite than the one generated directly from the finite state models.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 5 )