By Topic

Examining the Potentially Confounding Effect of Class Size on the Associations between Object-Oriented Metrics and Change-Proneness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuming Zhou ; Dept. of Comput. Sci. & Technol., Nanjing Univ., Nanjing, China ; Leung, H. ; Baowen Xu

Previous research shows that class size can influence the associations between object-oriented (OO) metrics and fault-proneness and therefore proposes that it should be controlled as a confounding variable when validating OO metrics on fault-proneness. Otherwise, their true associations may be distorted. However, it has not been determined whether this practice is equally applicable to other external quality attributes. In this paper, we use three size metrics, two of which are available during the high-level design phase, to examine the potentially confounding effect of class size on the associations between OO metrics and change-proneness. The OO metrics that are investigated include cohesion, coupling, and inheritance metrics. Our results, based on Eclipse, indicate that: 1) The confounding effect of class size on the associations between OO metrics and change-proneness, in general, exists, regardless of whichever size metric is used; 2) the confounding effect of class size generally leads to an overestimate of the associations between OO metrics and change-proneness; and 3) for many OO metrics, the confounding effect of class size completely accounts for their associations with change-proneness or results in a change of the direction of the associations. These results strongly suggest that studies validating OO metrics on change-proneness should also consider class size as a confounding variable.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 5 )