By Topic

Order-Preserving Moves for Graph-Cut-Based Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoqing Liu ; UtopiaCompression Corporation, Los Angeles ; Olga Veksler ; Jagath Samarabandu

In the last decade, graph-cut optimization has been popular for a variety of labeling problems. Typically, graph-cut methods are used to incorporate smoothness constraints on a labeling, encouraging most nearby pixels to have equal or similar labels. In addition to smoothness, ordering constraints on labels are also useful. For example, in object segmentation, a pixel with a “car wheel” label may be prohibited above a pixel with a “car roof” label. We observe that the commonly used graph-cut alpha-expansion move algorithm is more likely to get stuck in a local minimum when ordering constraints are used. For a certain model with ordering constraints, we develop new graph-cut moves which we call order-preserving. The advantage of order-preserving moves is that they act on all labels simultaneously, unlike alpha-expansion. More importantly, for most labels alpha, the set of alpha-expansion moves is strictly smaller than the set of order-preserving moves. This helps to explain why in practice optimization with order-preserving moves performs significantly better than alpha-expansion in the presence of ordering constraints. We evaluate order-preserving moves for the geometric class scene labeling (introduced by Hoiem et al.) where the goal is to assign each pixel a label such as “sky,” “ground,” etc., so ordering constraints arise naturally. In addition, we use order-preserving moves for certain simple shape priors in graph-cut segmentation, which is a novel contribution in itself.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 7 )