By Topic

Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pew-Thian Yap ; Nanyang Technological University, Singapore ; Xudong Jiang ; Alex Chichung Kot

This paper introduces a set of 2D transforms, based on a set of orthogonal projection bases, to generate a set of features which are invariant to rotation. We call these transforms Polar Harmonic Transforms (PHTs). Unlike the well-known Zernike and pseudo-Zernike moments, the kernel computation of PHTs is extremely simple and has no numerical stability issue whatsoever. This implies that PHTs encompass the orthogonality and invariance advantages of Zernike and pseudo-Zernike moments, but are free from their inherent limitations. This also means that PHTs are well suited for application where maximal discriminant information is needed. Furthermore, PHTs make available a large set of features for further feature selection in the process of seeking for the best discriminative or representative features for a particular application.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 7 )