Cart (Loading....) | Create Account
Close category search window
 

Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pew-Thian Yap ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Xudong Jiang ; Kot, A.C.

This paper introduces a set of 2D transforms, based on a set of orthogonal projection bases, to generate a set of features which are invariant to rotation. We call these transforms Polar Harmonic Transforms (PHTs). Unlike the well-known Zernike and pseudo-Zernike moments, the kernel computation of PHTs is extremely simple and has no numerical stability issue whatsoever. This implies that PHTs encompass the orthogonality and invariance advantages of Zernike and pseudo-Zernike moments, but are free from their inherent limitations. This also means that PHTs are well suited for application where maximal discriminant information is needed. Furthermore, PHTs make available a large set of features for further feature selection in the process of seeking for the best discriminative or representative features for a particular application.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.