By Topic

Intrinsic MANOVA for Riemannian Manifolds with an Application to Kendall's Space of Planar Shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huckemann, S. ; Inst. for Math. Stochastics, Univ. of Goettingen, Goettingen, Germany ; Hotz, T. ; Munk, A.

We propose an intrinsic multifactorial model for data on Riemannian manifolds that typically occur in the statistical analysis of shape. Due to the lack of a linear structure, linear models cannot be defined in general; to date only one-way MANOVA is available. For a general multifactorial model, we assume that variation not explained by the model is concentrated near elements defining the effects. By determining the asymptotic distributions of respective sample covariances under parallel transport, we show that they can be compared by standard MANOVA. Often in applications manifolds are only implicitly given as quotients, where the bottom space parallel transport can be expressed through a differential equation. For Kendall's space of planar shapes, we provide an explicit solution. We illustrate our method by an intrinsic two-way MANOVA for a set of leaf shapes. While biologists can identify genotype effects by sight, we can detect height effects that are otherwise not identifiable.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 4 )