Cart (Loading....) | Create Account
Close category search window
 

A Mixture of Transformed Hidden Markov Models for Elastic Motion Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huijun Di ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Linmi Tao ; Guangyou Xu

Elastic motion is a nonrigid motion constrained only by some degree of smoothness and continuity. Consequently, elastic motion estimation by explicit feature matching actually contains two correlated subproblems: shape registration and motion tracking, which account for spatial smoothness and temporal continuity, respectively. If we ignore their interrelationship, solving each of them alone will be rather challenging, especially when the cluttered features are involved. To integrate them into a probabilistic model, one straightforward approach is to draw the dependence between their hidden states. With regard to their separated states, there are, however, two different explanations of motion which are still made under the individual constraint of smoothness or continuity. Each one can be error-prone, and their coupling causes error propagation. Therefore, it is highly desirable to design a probabilistic model in which a unified state is shared by the two subproblems. This paper is intended to propose such a model, i.e., a Mixture of Transformed Hidden Markov Models (MTHMM), where a unique explanation of motion is made simultaneously under the spatiotemporal constraints. As a result, the MTHMM could find a coherent global interpretation of elastic motion from local cluttered edge features, and experiments show its robustness under ambiguities, data missing, and outliers.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.