By Topic

Layered Dynamic Textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Antoni B. Chan ; University of California, San Diego, La Jolla ; Nuno Vasconcelos

A novel video representation, the layered dynamic texture (LDT), is proposed. The LDT is a generative model, which represents a video as a collection of stochastic layers of different appearance and dynamics. Each layer is modeled as a temporal texture sampled from a different linear dynamical system. The LDT model includes these systems, a collection of hidden layer assignment variables (which control the assignment of pixels to layers), and a Markov random field prior on these variables (which encourages smooth segmentations). An EM algorithm is derived for maximum-likelihood estimation of the model parameters from a training video. It is shown that exact inference is intractable, a problem which is addressed by the introduction of two approximate inference procedures: a Gibbs sampler and a computationally efficient variational approximation. The trade-off between the quality of the two approximations and their complexity is studied experimentally. The ability of the LDT to segment videos into layers of coherent appearance and dynamics is also evaluated, on both synthetic and natural videos. These experiments show that the model possesses an ability to group regions of globally homogeneous, but locally heterogeneous, stochastic dynamics currently unparalleled in the literature.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 10 )