By Topic

Distributed Energy Optimization for Target Tracking in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xue Wang ; Dept. of Precision Instrum., Tsinghua Univ., Beijing, China ; Junjie Ma ; Sheng Wang ; Daowei Bi

Energy constraint is an important issue in wireless sensor networks. This paper proposes a distributed energy optimization method for target tracking applications. Sensor nodes are clustered by maximum entropy clustering. Then, the sensing field is divided for parallel sensor deployment optimization. For each cluster, the coverage and energy metrics are calculated by grid exclusion algorithm and Dijkstra's algorithm, respectively. Cluster heads perform parallel particle swarm optimization to maximize the coverage metric and minimize the energy metric. Particle filter is improved by combining the radial basis function network, which constructs the process model. Thus, the target position is predicted by the improved particle filter. Dynamic awakening and optimal sensing scheme are then discussed in dynamic energy management mechanism. A group of sensor nodes which are located in the vicinity of the target will be awakened up and have the opportunity to report their data. The selection of sensor node is optimized considering sensing accuracy and energy consumption. Experimental results verify that energy efficiency of wireless sensor network is enhanced by parallel particle swarm optimization, dynamic awakening approach, and sensor node selection.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 1 )