Cart (Loading....) | Create Account
Close category search window
 

Matching and Fairness in Threat-Based Mobile Sensor Coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ma, C.Y.T. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Yau, D.K.Y. ; Jren-Chit Chin ; Rao, N.S.V.
more authors

Mobile sensors can be used to effect complete coverage of a surveillance area for a given threat over time, thereby reducing the number of sensors necessary. The surveillance area may have a given threat profile as determined by the kind of threat, and accompanying meteorological, environmental, and human factors. In planning the movement of sensors, areas that are deemed higher threat should receive proportionately higher coverage. We propose a coverage algorithm for mobile sensors to achieve a coverage that will match - over the long term and as quantified by an RMSE metric - a given threat profile. Moreover, the algorithm has the following desirable properties: 1) stochastic, so that it is robust to contingencies and makes it hard for an adversary to anticipate the sensor's movement, 2) efficient, and 3) practical, by avoiding movement over inaccessible areas. Further to matching, we argue that a fairness measure of performance over the shorter time scale is also important. We show that the RMSE and fairness are, in general, antagonistic, and argue for the need of a combined measure of performance, which we call efficacy. We show how a pause time parameter of the coverage algorithm can be used to control the trade-off between the RMSE and fairness, and present an efficient offline algorithm to determine the optimal pause time maximizing the efficacy. Finally, we discuss the effects of multiple sensors, under both independent and coordinated operation. Extensive simulation results - under realistic coverage scenarios - are presented for performance evaluation.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.