By Topic

Bayesian Classifiers Programmed in SQL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ordonez, C. ; Dept. of Comput. Sci., Univ. of Houston, Houston, TX, USA ; Pitchaimalai, S.K.

The Bayesian classifier is a fundamental classification technique. In this work, we focus on programming Bayesian classifiers in SQL. We introduce two classifiers: naive Bayes and a classifier based on class decomposition using K-means clustering. We consider two complementary tasks: model computation and scoring a data set. We study several layouts for tables and several indexing alternatives. We analyze how to transform equations into efficient SQL queries and introduce several query optimizations. We conduct experiments with real and synthetic data sets to evaluate classification accuracy, query optimizations, and scalability. Our Bayesian classifier is more accurate than naive Bayes and decision trees. Distance computation is significantly accelerated with horizontal layout for tables, denormalization, and pivoting. We also compare naive Bayes implementations in SQL and C++: SQL is about four times slower. Our Bayesian classifier in SQL achieves high classification accuracy, can efficiently analyze large data sets, and has linear scalability.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 1 )