Cart (Loading....) | Create Account
Close category search window
 

Parallel Two-Sided Matrix Reduction to Band Bidiagonal Form on Multicore Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ltaief, H. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Kurzak, J. ; Dongarra, J.

The objective of this paper is to extend, in the context of multicore architectures, the concepts of tile algorithms [Buttari et al., 2007] for Cholesky, LU, and QR factorizations to the family of two-sided factorizations. In particular, the bidiagonal reduction of a general, dense matrix is very often used as a preprocessing step for calculating the Singular Value Decomposition. Furthermore, in the Top500 list of June 2008, 98 percent of the fastest parallel systems in the world were based on multicores. This confronts the scientific software community with both a daunting challenge and a unique opportunity. The challenge arises from the disturbing mismatch between the design of systems based on this new chip architecture-hundreds of thousands of nodes, a million or more cores, reduced bandwidth and memory available to cores-and the components of the traditional software stack, such as numerical libraries, on which scientific applications have relied for their accuracy and performance. The many-core trend has even more exacerbated the problem, and it becomes critical to efficiently integrate existing or new numerical linear algebra algorithms suitable for such hardware. By exploiting the concept of tile algorithms in the multicore environment (i.e., high level of parallelism with fine granularity and high-performance data representation combined with a dynamic data-driven execution), the band bidiagonal reduction presented here achieves 94 Gflop/s on a 12,000 ?? 12,000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for the bidiagonal reduction is that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrix to the required form.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.