By Topic

Model Reduction Using Piecewise-Linear Approximations Preserves Dynamic Properties of the Carbon Starvation Response in Escherichia coli

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delphine Ropers ; INRIA Grenoble-Rhône-Alpes, Saint Ismier Cedex ; Valentina Baldazzi ; Hidde de Jong

The adaptation of the bacterium Escherichia coli to carbon starvation is controlled by a large network of biochemical reactions involving genes, mRNAs, proteins, and signalling molecules. The dynamics of these networks is difficult to analyze, notably due to a lack of quantitative information on parameter values. To overcome these limitations, model reduction approaches based on quasi-steady-state (QSS) and piecewise-linear (PL) approximations have been proposed, resulting in models that are easier to handle mathematically and computationally. These approximations are not supposed to affect the capability of the model to account for essential dynamical properties of the system, but the validity of this assumption has not been systematically tested. In this paper, we carry out such a study by evaluating a large and complex PL model of the carbon starvation response in E. coli using an ensemble approach. The results show that, in comparison with conventional nonlinear models, the PL approximations generally preserve the dynamics of the carbon starvation response network, although with some deviations concerning notably the quantitative precision of the model predictions. This encourages the application of PL models to the qualitative analysis of bacterial regulatory networks, in situations where the reference time scale is that of protein synthesis and degradation.

Published in:

IEEE/ACM Transactions on Computational Biology and Bioinformatics  (Volume:8 ,  Issue: 1 )