By Topic

Investigation of electron source and ion flux uniformity in high plasma density inductively coupled etching tools using two‐dimensional modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ventzek, Peter L.G. ; University of Illinois, Department of Electrical and Computer Engineering, Urbana, Illinois 61801 ; Grapperhaus, Michael ; Kushner, M.J.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.587488 

Inductively coupled plasma (ICP) sources are being developed as reactors for high plasma density (1011–1012 cm-3), low‐pressure (≪10–20 mTorr) etching of semiconductors and metals for microelectronics fabrication. Transformer coupled plasmas (TCPs) are one variant of ICP etching tools which use a flat spiral coil having a rectangular cross section powered at radio frequencies (rf) to produce a dense plasma in a cylindrical plasma chamber. Capacitive rf biasing of the substrate may also be used to independently control ion energies incident on the wafer. The uniformity of generating the plasma and the uniformity of the flux of reactants to the substrate are functions of the geometry and placement of the coil; and of the materials used in the construction of the chamber. In this article, we use results from a two‐dimensional model to investigate design issues in TCPs for etching. We parametrize the number of turns and locations of the coil; and material properties of the reactor. We find that at low pressure, designs which produce ionization predominantly at larger radii near the edge of the wafer produce more uniform ion fluxes to the substrate. This results from a ‘‘converging’’ ion flux which compensates for losses to lateral surfaces. Careful attention must be paid to metal structures in the vicinity of the coils which restrict the azimuthal electrical field. This situation results in reduced power deposition at large radii, which can be compensated by over sizing the coil or by using auxiliary solenoidal coils. The plasma and neutral transport, dominated by diffusion, treats the advective flow from the gas inlets and pump port as local sources and sinks which are rapidly volume averaged.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:12 ,  Issue: 6 )