By Topic

A new numerical method for rough-surface scattering calculations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A new approach to solving the magnetic field integral equation (MFIE) for the current induced on a infinite perfectly conducting rough surface is presented. By splitting the propagator matrix into contributions from the left and from the right of the point of observation, a second kind integral equation can be formed with a new Born term and a new kernel. Following discretization of this new integral equation, the unknown currents can be determined more rapidly and with significantly less storage requirements than conventional LU decomposition; where the time saving factor is roughly N/3 where N is the number of current samples on the surface and the usual storage requirements associated with matrix inversion are eliminated. While the new Born term is usually adequate for scattered field calculations, the new discretized integral equation can be iterated to amy desired accuracy with no apparent convergence problems. Results are presented for one-dimensional rough surfaces with rms heights exceeding one wavelength and rms slopes exceeding 40° which illustrate the robustness of the new Born term.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:44 ,  Issue: 5 )