Cart (Loading....) | Create Account
Close category search window

Proximity effect reduction in x‐ray mask making using thin silicon dioxide layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rhee, Kee W. ; Nanoelectronics Processing Facility, Naval Research Laboratory, Washington, DC 20375 ; Ma, D.I. ; Peckerar, Martin C. ; Ghanbari, R.A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A novel method is reported for reducing the proximity effect in high‐resolution electron beam patterning of high atomic number materials such as tungsten. The method involves interposing a thin (50–400 nm) layer of SiO2 between the resist and the underlying high‐Z substrate. Examples are shown in which gratings of 0.2 μm lines with a 0.5 μm period were written without proximity effect compensation. Optimal intermediate layer thickness for the best resolution of the gratings is determined to be 200 nm. A Monte Carlo model of electron scattering including inelastic processes has been implemented to interpret our experimental results. The model presented shows that having the low atomic number SiO2 layer between the resist and the tungsten prevents the fast secondary electrons being generated at the surface of the tungsten from propagating back into the resist, suggesting a mechanism for proximity effect reduction. The results presented here have important practical applications for x‐ray mask making.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:10 ,  Issue: 6 )

Date of Publication:

Nov 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.