Cart (Loading....) | Create Account
Close category search window

Proximity effect correction data processing system for electron beam lithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Harafuji, Kenji ; Semiconductor Research Center, Matsushita Electric Ind. Co., Ltd., Moriguchi, Osaka, 570, Japan ; Misaka, Akio ; Kawakita, Kenji ; Nomura, Noboru
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A proximity effect correction system has been developed by utilizing an efficient dose modulation technique based on a double Gaussian proximity function. A shaped electron beam system is assumed to be used. Two improvements are made. First, an optimal exposure dose on each pattern is determined by a new fast iterative method. The optimal dose makes the development isocontour conform to the pattern specification fairly well. Second, a ‘‘simple cell unit algorithm’’ that one of identical cells is proximity‐corrected, and the result is used to the other remaining cells is introduced. This offers to both decrease the processing time and save the memory/disk space. The present system is applied to the data processing of scaled‐down version of an aluminum wiring layer pattern of 16 Mbit dynamic random access memory with its minimum dimension of 0.4 μm. The calculation is successfully completed within 1 h of CPU time on a 10 MIPS general‐purpose computer. The dimensional accuracy of 10% is confirmed experimentally for the pattern including minimum features of 0.4 μm in the combination of trilayer resist process.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.