Cart (Loading....) | Create Account
Close category search window
 

Sparse LMS for system identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yilun Chen ; Dept. of EECS, Univ. of Michigan, Ann Arbor, MI ; Yuantao Gu ; Hero, A.O.

We propose a new approach to adaptive system identification when the system model is sparse. The approach applies lscr1 relaxation, common in compressive sensing, to improve the performance of LMS-type adaptive methods. This results in two new algorithms, the zero-attracting LMS (ZA-LMS) and the reweighted zero-attracting LMS (RZA-LMS). The ZA-LMS is derived via combining a lscr1 norm penalty on the coefficients into the quadratic LMS cost function, which generates a zero attractor in the LMS iteration. The zero attractor promotes sparsity in taps during the filtering process, and therefore accelerates convergence when identifying sparse systems. We prove that the ZA-LMS can achieve lower mean square error than the standard LMS. To further improve the filtering performance, the RZA-LMS is developed using a reweighted zero attractor. The performance of the RZA-LMS is superior to that of the ZA-LMS numerically. Experiments demonstrate the advantages of the proposed filters in both convergence rate and steady-state behavior under sparsity assumptions on the true coefficient vector. The RZA-LMS is also shown to be robust when the number of non-zero taps increases.

Published in:

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on

Date of Conference:

19-24 April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.