By Topic

Adaptive Newton algorithms for blind equalization using the generalized constant modulus criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Jun Zeng ; Dept. of Autom., Tsinghua Univ., Beijing ; Xi-Lin Li ; Xian-Da Zhang

Two Newton-type algorithms using the generalized complex modulus (GCM) criterion for blind equalization and carrier phase recovery are proposed. First the partial Hessian and full Hessian of the real GCM loss function with complex valued arguments are calculated by second-order differential. Then an adaptive pseudo Newton learning algorithm and a full Newton learning algorithm are designed. By using the matrix inversion lemma, both Newton algorithms can be implemented with a computational complexity of O(L2) efficiently, where L is the length of equalizer. Simulation results demonstrate that the two Newton algorithms can achieve automatic carrier phase recovery and exhibit fast convergence rates.

Published in:

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on

Date of Conference:

19-24 April 2009