By Topic

Lossless compression of AVIRIS images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roger, R.E. ; Dept. of Electr. Eng., New South Wales Univ., Canberra, ACT, Australia ; Cavenor, M.

Adaptive DPCM methods using linear prediction are described for the lossless compression of hyperspectral (224-band) images recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The methods have two stages-predictive decorrelation (which produces residuals) and residual encoding. Good predictors are described, whose performance closely approaches limits imposed by sensor noise. It is imperative that these predictors make use of the high spectral correlations between bands. The residuals are encoded using variable-length coding (VLC) methods, and compression is improved by using eight codebooks whose design depends on the sensor's noise characteristics. Rice (1979) coding has also been evaluated; it loses 0.02-0.05 b/pixel compression compared with better VLC methods but is much simpler and faster. Results for compressing ten AVIRIS images are reported

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 5 )