By Topic

New Synthetic Route of Z-Type (Ba _{3} Co _{2} Fe _{24} O _{41} ) Hexaferrite Particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Bae, S. ; MINT Center, Univ. of Alabama, Tuscaloosa, AL ; Hong, Y.K. ; Lee, J.J. ; Jalli, J.
more authors

Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe12O19) and 83.8% pure Y-type (Ba2Co2Fe12O22) precursors to synthesize Z-type by the MCP. As a result, 77.8% pure Co2Z hexaferrite particles were obtained. The purities of Co2Z hexaferrite particles processed by SGP and CCP were 75.1% and 70.7%, respectively. It was found that purity of Z-phase was controllable by purity of M- and Y-type precursor particles in the MCP. Loss tan delta of sintered MCP Co2Z decreased from 0.17 at 50 MHz to 0.068 at 300 MHz, while loss tan delta of sintered SGP and CCP Co2Z were 0.12 and 0.09 at 300 MHz. It is found that this loss tan delta is controllable by the purity of Z-phase and sintering process. These results imply that our new process is potentially applicable to synthesis of any other hexaferrites and also cost-effective.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 6 )