By Topic

Effect of Interface Roughness on Magnetoresistance and Magnetization Switching in Double-Barrier Magnetic Tunnel Junction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Hwang, J.Y. ; Dept. of Phys., Sookmyung Women''s Univ., Seoul ; Lee, S.Y. ; Lee, N.I. ; Yim, H.I.
more authors

The three kinds of double-barrier magnetic tunnel junction (DMTJ) with or without amorphous ferromagnetic Co70.5Fe4.5Si15B10 (in at. %) free-layer were investigated to understand the effect of the free-layer on the bias voltage dependence of tunneling magnetoresistance (TMR) ratio. The DMTJ structure consisted of Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlOx/free-layer 7/AlOx/CoFe 7/IrMn 10/Ru 60 (thickness in nm). Various free layers, such as CoFe 7, CoFeSiB 7, and CoFe 1.5/CoFeSiB 4/CoFe 1.5 were prepared and compared. The roughness values of the interface between free-layer and tunnel barrier were confirmed by using the techniques of X-ray reflectivity and transmission electron microscopy. As a result, the amorphous free-layer made the interface roughness of DMTJ smoother, reducing the interlayer coupling field and suppressing the bias voltage dependence of TMR ratio at a given voltage.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 6 )