Cart (Loading....) | Create Account
Close category search window
 

Spin Interaction Effect on Potentiometric Measurements in a Quantum Well Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Youn Ho Park ; Center for Spintronics Res., Korea Inst. of Sci. & Technol., Seoul ; Hyun Cheol Koo ; Kyung Ho Kim ; Kim, Hyung-jun
more authors

Spin-orbit interaction induced magnetic field, which can arise from an asymmetry of the potential well, causes imbalance of carrier densities between spin-up and spin-down electrons. In the potentiometric measurement, the detected signal follows the magnetization status of the detection ferromagnet (FM1). In case of adding the neighboring ferromagnet (FM2), the measured potential is decided by both of FMs. When the magnitude of external field is between the coercive field of the FM1 and FM2, the detector reads the intermediate potential. The detector interacts with the neighboring ferromagnet and shows four levels of potential states.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.