By Topic

Rank Modulation for Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anxiao Jiang ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX ; Mateescu, R. ; Schwartz, M. ; Bruck, J.

We explore a novel data representation scheme for multilevel flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The only allowed charge-placement mechanism is a ldquopush-to-the-toprdquo operation, which takes a single cell of the set and makes it the top-charged cell. The resulting scheme eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. We present unrestricted Gray codes spanning all possible n-cell states and using only "push-to-the-top" operations, and also construct balanced Gray codes. One important application of the Gray codes is the realization of logic multilevel cells, which is useful in conventional storage solutions. We also investigate rewriting schemes for random data modification. We present both an optimal scheme for the worst case rewrite performance and an approximation scheme for the average-case rewrite performance.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 6 )