By Topic

Quantum Efficiency Analysis of InAs–GaSb Type-II Superlattice Photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shin Mou ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Jian V. Li ; Shun Lien Chuang

We compare the experimentally measured and theoretically calculated quantum efficiency (QE), where an analytical drift-diffusion photocurrent model is used, of n+ -on-p InAs-GaSb superlattice (SL) photodiodes. With inputs of the transport parameters obtained by the electron-beam-induced current technique and absorption coefficient spectra calculated by the eight-band kldrp method for the p-SL, n+ -SL, and depletion region, taking into account the band filling effect, we show that the drift-diffusion photocurrent model is a good approximation for the InAs-GaSb type-II SL photodiodes, which implies that the SL depletion region in InAs-GaSb SL photodiodes is as effective as that in bulk semiconductor photodiodes in terms of collecting the photo-excited electron-hole pairs. Using this theoretical model, we also find that the high doping density in n-type SL degrades the QE by reducing the absorption coefficient. As a result, the n-type doping density is suggested to be below 1times1017cm-3 in order to optimize the QE for the studied InAs-GaSb SL photodiodes.

Published in:

IEEE Journal of Quantum Electronics  (Volume:45 ,  Issue: 6 )