By Topic

Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Syafaruddin ; Dept. of Comput. Sci. & Electr. Eng., Kumamoto Univ., Kumamoto ; Karatepe, E. ; Hiyama, T.

The one of main causes of reducing energy yield of photovoltaic systems is partially shaded conditions. Although the conventional maximum power point tracking (MPPT) control algorithms operate well under uniform insolation, they do not operate well in non-uniform insolation. The non-uniform conditions cause multiple local maximum power points on the power-voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global maximum power point (MPP) may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognise the global operating point under partially shaded conditions. In this paper, a novel MPPT system is proposed for partially shaded PV array using artificial neural network (ANN) and fuzzy logic with polar information controller. The ANN with three layer feed-forward is trained once for several partially shaded conditions to determine the global MPP voltage. The fuzzy logic with polar information controller uses the global MPP voltage as a reference voltage to generate the required control signal for the power converter. Another objective of this study is to determine the estimated maximum power and energy generation of PV system through the same ANN structure. The effectiveness of the proposed method is demonstrated under the experimental real-time simulation technique based dSPACE real-time interface system for different interconnected PV arrays such as series-parallel, bridge link and total cross tied configurations.

Published in:

Renewable Power Generation, IET  (Volume:3 ,  Issue: 2 )